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Figure 1: Four text-color hybrid annotation strategies for multiclass map visualization. (a) Legend-Aside Map. (b) Label-Fill

Map. (c) Label-Fit Map. (d) Colored Label-Fill Map.
Abstract

Prior work has identified the shortcomings of color-only encod-
ings for maps with many categories, yet systematic comparisons
of hybrid text-color strategies remain scarce. We therefore ran an
80-participant crowdsourced study on choropleth maps with 8-13
categories—approaching the 10-hue perceptual limit—to compare
four annotation designs (Legend-Aside, Label-Fill, Label-Fit, Col-
ored Label-Fill) across Count, Identify, Compare, and Rank tasks.
Results show that the Label-Fit Map—with a single, large in-situ
label—yields the highest accuracy and speed and ranks first in read-
ability; Legend-Aside excels in simple counting and side-by-side
comparisons. These findings deliver clear, task-specific guidelines
for enhancing multiclass map readability and efficiency, informing
the design of more effective map visualizations. All supplementary
materials are available at our GitHub repository.
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1 Introduction

Map data are ubiquitous across domains like urban planning [30],
socio-economic analysis [31], and environmental monitoring [31].
These scenarios demand effective visualization techniques to con-
vey both spatial distribution and inter-category relationships. Among
these approaches, choropleth maps remain the most prevalent: each
region is colored by category to reveal geographic patterns.

However, pure color encoding suffers severe limitations as cat-
egory counts rise. Colin Ware [32] recommends using no more
than ten distinct hues for reliable symbol identification against
varied backgrounds; similar constraints are validated in studies on
color-category perception (e.g., [6], [11]). In practice—whether map-
ping land-cover classifications, linguistic distributions, or political
affiliations—datasets often include dozens of classes, far exceeding
color’s capacity. Consequently, users may face increased cognitive
load, higher error rates, and constant legend consultation, all of
which degrade speed and accuracy.
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To mitigate these challenges, dual-encoding schemes that com-
bine text and color have been proposed and applied [35]. Yet the
design space—and their relative effectiveness—remains underex-
plored. In this work, we define and evaluate four hybrid text-color
designs (Legend-Aside Map, Label-Fill Map, Label-Fit Map, and
Colored Label-Fill Map) across four representative map-reading
tasks: count, identification, comparison, and ranking. We measure
task completion time, accuracy, and self-reported readability, com-
prehension, aesthetic appeal, and complexity.

Our contributions are twofold:

A first systematic empirical comparison of four text-color hybrid
map designs on real-world, multi-category data.

Actionable, evidence-based design guidelines for categorical map
visualization.

Our findings can inform GIS software defaults, cartography cur-
ricula, and standards for interactive dashboards.

2 Related Work
2.1 Map Data Visualization

In cartography, map data refers to spatial datasets that have been
processed, generalized, and symbolized for effective thematic dis-
play [14, 26]. Such data marry geometric primitives (points, lines,
and polygons) with rich attribute tables, then undergo projection,
simplification, and styling to optimize legibility and emphasize the
intended message [1]. Well-formatted map data serve as the back-
bone of decision-making across a wide spectrum of fields. In public
health, disease-incidence maps guide intervention strategies [36];
in ecology, ecosystem-service inventories reveal supply—demand
balances for sustainable management [27]. Urban planners leverage
them for infrastructure siting [7]. Emergency responders depend
on rapid, accurate map updates during disasters [2].

Various visualization techniques have been developed to render
these structured datasets [13, 35]. The most prevalent forms include:

Choropleth Maps: Entire areal units are shaded according to cate-
gorical or aggregated quantitative values, capitalizing on our ability
to perceive hue differences to reveal spatial patterns and clusters.
Proportional-Symbol Maps: Point symbols (e.g., circles, squares)
are sized in accordance with underlying numeric values, allowing
precise comparison of magnitudes at discrete locations.
Dot-Density Maps: Uniform symbols (“dots”) are randomly or regu-
larly placed within regions to represent counts, conveying density
through point frequency.

Isarithmic (Isopleth) Maps: Contour lines or gradient bands inter-
polate continuous phenomena (such as elevation or temperature)
across space.

Cartograms: Geographic shapes are deliberately distorted so that
their areas become proportional to a chosen variable, highlighting
relative significance over geographic fidelity.

Flow Maps: Arrows or lines of varying thickness depict movement
volumes or directions between origins and destinations.

Among these, choropleth mapping remains the prevalent choice
for visualizing both categorical and aggregated quantitative map
data, due to its intuitive mapping of region — color — value (or
class). Its widespread adoption underscores the importance of ad-
dressing the perceptual and cognitive limits inherent in color-based
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encoding—a challenge this work seeks to overcome through hybrid
text—color annotation strategies.

2.2 Text in Visualization

In visualization design, text fulfills two principal roles: annotation—
providing labels, captions, and explanatory notes, and encoding—
conveying data values, categories, or textual information directly
through typographic and spatial properties.

Annotation. . Text annotations, such as axis labels, legends, and
tooltips, enrich visualizations by contextualizing graphical elements
without altering their encoding. Direct labeling techniques—placing
names on map regions or data points—minimize the need for ex-
ternal legends and reduce visual search time, thereby improving
task performance in identification and comparison. Interactive text
annotations further support drill-down analysis, allowing users to
access details on demand while preserving a clean overall view.

Encoding. . When text operates as an encoding channel, it di-
rectly represents information through typography, positioning, or
semantic content. This encompasses two common scenarios:

Category and Quantitative Encoding: Typography (font size,
weight, color) can map to numeric values or discrete classes, off-
setting limitations of color and shape palettes in complex datasets.
For example, hybrid map designs overlay labels within regions to
disambiguate categories beyond palette constraints [3, 22].

Text Visualization: In scenarios where the data itself is textual—such
as document term frequencies or keyword importance—word clouds
(tag clouds) use font size and spatial arrangement to encode fre-
quency or relevance. Word cloud algorithms (e.g., Wordle [29],
SparkClouds [17]) exemplify text-first encoding, revealing seman-
tic patterns and term prominence through typographic variation
and layout [10].

2.3 Text in Map Visualization

Text are integral to map visualizations, serving both as contextual
annotations and as direct encoding channels tailored to geographic
data. While annotation aligns closely with general visualization
practices, encoding leverages text to overcome limitations inherent
to color or shape in complex spatial contexts.

Annotation of Spatial Features. . Text annotations—such as place
names, region labels, legends, and tooltips—anchor geographic fea-
tures in context, eliminating separate lookup tables and speeding
identification. Direct labeling of polygons and lines reduces cog-
nitive load in tasks like point matching and region comparison
[3]. In dense or cluttered maps, collision-avoidance algorithms
and density-based placement heuristics ensure text remains legible
without obscuring critical details [4, 18, 23].

Text as Encoding Channel. . When traditional graphical channels
(e.g., color, shape, iconography) hit perceptual or semantic lim-
its—particularly in multi-category or tag-rich maps—text operates
as a robust encoding medium. Two main approaches have emerged:

Overlay Text Labels: Text is rendered atop colored regions or map
features, using the underlying fill to convey class while the overlaid
label ensures immediate category recognition. Examples include
intrinsic label-fill strategies that embed words within region shapes
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[21, 23], and overlay tag maps that place keywords freely on top of
maps [16, 25, 28]. This approach disambiguates hues and reduces
legend dependence.

Text Glyphs: The text glyphs themselves carry the class color, and
the map background remains neutral or grayscale. Intrinsic tag
maps like Taggram [9, 21] and Chroma-Text Field Maps encode
term frequency or category importance directly through colored
typography, optimizing space and perceptual clarity [33, 34]. Direct
text encoding is particularly advantageous when icons or color
palettes fail—such as when categories exceed ten hues or when user
familiarity with symbols is low—resulting in faster, more accurate
interpretation without extensive legend consultation.

In this work, we build on these map-specific text strategies and
systematically explore four representative hybrid text—color encod-
ing designs (Legend-Aside Map, Label-Fill Map, Label-Fit Map,
and Colored Label-Fill Map) to optimize category discriminability
and user performance in multiclass map visualization.

3 Visualization

3.1 Categorical Map Visualization

Drawing on available work, we have identified four hybrid visu-
alization strategies (shown in Figure 1) to compare that integrate
color and text to depict categorical maps:

Legend-Aside Map. In this classic choropleth approach, each re-
gion is filled with a distinct hue, and all class names are listed in
a consolidated legend alongside the map. This separation of color
(on-map) and text (in the legend) maximizes spatial clarity and
keeps the map itself uncluttered.

Label-Fill Map. In this method, text labels are tiled repeatedly over
their corresponding regions. The region’s fill color both conveys the
class and serves as the backdrop for the text, creating an integrated,
texture-like effect that tightly couples label and color.

Label-Fit Map. In this strategy, the class name is placed as a single
label within each corresponding region.

Colored Label-Fill Map. In this approach, text labels are tiled to
cover the region, but the class hue is applied directly to the text
glyphs rather than to a background. In other words, the letters
become the color carriers while the region behind them remains
neutral, yielding a striking, letter-centered encoding of class.

A Colored Label-Fit strategy was intentionally excluded from our
study. With this method, a single colored label is placed within a
neutral region, making it difficult for users to perceive the full spa-
tial distribution of each category without adding explicit boundary
lines. However, adding such boundaries would introduce new visual
variables (e.g., line color and weight). To avoid the confounding
influence of these variables, we excluded this strategy from our
experiment.

3.2 Map Generation

All visualizations were implemented in Python, leveraging Mat-
plotlib [15] for map rendering, Numpy [12] for geometric analysis,
Wordcloud library [19] for label tiling, and Pillow [8] for image
compositing. The source code is available at our GitHub repository
. We chose eight publicly available choropleth datasets featuring
8-13 discrete categories—aligned with the approximately 10-hue
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limit for reliable color discrimination [32]. Source maps with sec-
ondary encodings (e.g., rivers, roads) were cleaned in Photoshop to
remove extraneous details. And we keep their original color cod-
ing. Legends in Legend-Aside Map were standardized in placement
(bottom-right), size, and font styling to ensure uniform presenta-
tion.

Region Orientation and Text Placement: Yang et al. [20] demon-
strated that adapting label direction to region shape allows larger
fonts and improves legibility. Therefore, PCA was used to align
text along each polygon’s dominant axis, maximizing font size in
the rotated bounding box.

Text Color and Contrast: To ensure text legibility across all visu-
alizations, we enforced a minimum 3:1 luminance contrast ratio, a
standard guideline for readability [32]. Our color control strategy
was adapted for the different mapping techniques: For the Label-
Fill and Label-Fit maps, where text is overlaid on colored category
regions, we rendered all text in black. This choice ensured that the
3:1 contrast ratio was consistently met or exceeded against every
category’s fill color. For the Colored Label-Fill Map, the text itself
carries the categorical identity. Therefore, our approach was to
first sample the original hue from each category and apply it to the
text glyphs. We then systematically adjusted the luminance of each
color until it achieved the required 3:1 contrast ratio against the
neutral white background, thereby preserving the intended color
association while guaranteeing readability.

The implementation details are as follows:

Legend-Aside Map: Render each region in its category color; add
a consolidated legend mapping colors to labels; omit on-map labels.
Label-Fit Map: Place one black text label at each region’s centroid,
rotate per its PCA axis, and scale to the maximum fitting font size
inside the polygon.

Label-Fill Map: Use the Wordcloud library to fill each region’s bi-
nary mask with repeated black text of its category label, constrained
by a maximum font size to ensure a prominent label.

Colored Label-Fill Map: Extend the Label-Fill pipeline by using
ImageColorGenerator to sample region fill colors and modify for
text glyphs, producing colored text on a white backdrop.

This consistent pipeline—common data sources, preprocessing,
orientation, and color treatments—ensures that annotation strategy
is the only variable across our comparative evaluation.

4 Experiment

To evaluate the performance and user experience of four visual-
ization strategies, we ran a crowdsourced experiment. Participants
completed representative map-reading tasks and provided subjec-
tive feedback on each design. We recruited English-speaking users
via Prolific ! and Chinese-speaking users via Credamo 2-chosen
for their complementary reach, and rapid turnaround-to ensure
linguistic and cultural diversity. All procedures, including task as-
signment, data collection, and debriefing, conformed to our uni-
versity’s ethics guidelines and received formal approval from the
institutional review board.

!https://www.prolific.com/
Zhttps://www.credamo.com/
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4.1 Participants

A total of 80 participants were recruited for this study (41 female,
39 male; age: M = 31.71, SD = 11.47), with an equal distribution of 40
participants from each platform. Participants were compensated at
the minimum fee required platform upon successful completion of
the survey. All participants were required to be at least 18 years of
age, fluent in English for Prolific participants, and fluent in Chinese
for Credamo, free from color vision deficiencies, and prohibited
from undertaking the survey more than once. To standardize the
viewing experience and ensure consistent map sizes, a strict device
requirement was enforced: participants could only use devices with
a minimum screen size of 13.3 inches (e.g., laptops or desktops),
explicitly disallowing smartphones or tablets. Participants reported
frequent use of map-based tools (M = 4.03) and moderate knowledge
of data visualization (M = 3.23). Familiarity with Chinese geography
(M = 3.08) was similar with U.S. geography (M = 2.93). Eight dataset
familiarity scores ranged from 2.48 to 2.86.

4.2 Dataset

We selected eight representative maps from publicly available sources,
including academic journals, government agencies, professional
databases, and reputable media outlets. These maps encompass
diverse thematic areas relevant to regional geography and spatial
analysis. The sources and corresponding topics are listed below:
M1) Wikipedia - Distribution of Dialects in China
M?2) Visual Capitalist - Most Valuable Agricultural Commodities

in the U.S.

M3) Frontiers in Sustainable Food Systems — Ecological Divisions
in the US.

M4) United States Geological Survey — Farm Resource Regions
in the U.S.

M35) International Journal of Environmental Research and Public
Health — Major Agricultural Areas in China

Mé) Vegetation Classification and Survey — Vegetation Produc-
tion Units in the U.S.

M7) SAS Blogs — Regional Cultures in the U.S.

M8) Agricultural and Applied Economics Association — Economic
Regions in the U.S.

Selection of these maps was guided by two primary criteria:
Number of categories. Colin Ware [32] suggested no more than
ten distinct colors for symbol coding when accurate identification
is required. Each selected map contains eight to thirteen thematic
categories, deliberately chosen to approach the limits of human
color-discrimination and create challenging scenarios for users.
Spatial distribution and difficulty balancing. To control task
difficulty and minimize potential biases caused by variations in
map structure, we carefully assessed the spatial distribution of
categories across regions. Based on the total number of categories,
the number of spatial units, and the overall distribution patterns,
the selected maps were categorized into two difficulty levels: Simple
and Complex. Each participant was assigned one simple and one
complex map per map visualization (see arrangement in Table 1).

4.3 Questionnaire

The questionnaire consisted of seven sequential components: (1)
introduction, (2) demographic information collection, (3) training
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Table 1: Map assignments for each visualization type per
participant.

PG N Legend-  Label-Fill Label-Fit Colored
Aside Label-Fill

1 20 M5, M2 Mé6, M3 M7, M4 M8, M1

2 20 Ms, M1 M5, M2 Mo, M3 M7, M4

3 20 M7, M4 M8, M1 M5, M2 Meé, M3

4 20 M6, M3 M7, M4 M8, M1 M5, M2

Each participant group (PG) consisting of N participants completed trials in a
within-subject design. Each participant experienced all four visualization
types, with each type paired with two maps (e.g., Legend-Aside with M5 and
M2). The presentation order of the Visualization-Map combinations was
randomized across participants.

trials, (4) main task trials, (5) post-task metric ratings, (6) overall
preference selection, and (7) open-ended suggestions for improve-
ment. On average, participants completed the entire questionnaire
in approximately 50 minutes. A single attention check question
was included to ensure engagement.

The study employed a within-subjects design in which each
participant completed tasks using four different visualization tech-
niques, with each technique applied to two distinct map datasets. To
control for potential learning and order effects, we adopted a Latin
Square counterbalancing scheme (see Table 1). This design ensured
that (i) every participant was exposed to all four visualization types
exactly twice, (ii) the order of presentation was evenly distributed
across participants, and (iii) the pairing of visualizations and map
datasets remained consistent within each participant group. In total,
this procedure produced 32 map stimuli-eight source maps, each
rendered in four visualization variants.

Introduction. Participants were provided with a concise expla-
nation of the study’s purpose and structure. They were informed of
their rights, including voluntary participation, the option to with-
draw at any point, and guaranteed anonymity and data protection.
Informed consent was obtained prior to continuing.

Demographic information collection. Participants were asked
to provide basic demographic information (e.g., age, gender), their
familiarity with geographic and data visualizations, and their prior
knowledge of the map themes presented in the study.

Training. Then, participants proceeded to the training session,
consisting of two map datasets, each accompanied by the full visu-
alization set of four tasks, resulting in eight training trials.

Main task. The core of the study consisted of four map-based
tasks designed to evaluate different aspects of categorical map in-
terpretation. The Count task served as the primary measure, intro-
duced specifically to assess the impact of color-code differentiation.
We remove the legend on this task on Legend-Aside map. The re-
maining three tasks—Identify, Compare, and Rank-were adapted
from established map-visualization primitives [24] and provided
complementary insights into retrieval efficiency, relational analysis,
and hierarchical perception.

Each participant experienced all four visualization strategies,
with two maps per strategy (one “easy” and one “complex”). For
each map, they completed four tasks, resulting in 4 X 2 X 4 = 32
trials per participant.


https://en.wikipedia.org/wiki/File:Map_of_sinitic_languages_full-en.svg
https://www.visualcapitalist.com/most-valuable-agricultural-commodity-state/
https://www.frontiersin.org/journals/sustainable-food-systems/articles/10.3389/fsufs.2020.00098/full
https://pubs.usgs.gov/publication/pp1768
https://www.mdpi.com/1660-4601/19/21/13812
https://www.mdpi.com/1660-4601/19/21/13812
https://vcs.pensoft.net/article/67537/
https://blogs.sas.com/content/sastraining/2016/01/20/11279/
https://ageconsearch.umn.edu/record/126929/?v=pdf
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Post-task metric ratings. After completing the four tasks for H3 (Increasing Task Difficulty): As task difficulty grows (e.g., from

each map, participants were required to evaluate the visualization
techniques on a 5-point Likert scale (from 1 = strongly disagree to
5 = strongly agree) on four key metrics: Readability, Information
Extraction, Aesthetic Appeal, and Complexity. These metrics were
carefully selected based on existing literature on infographics [5],
and were specifically tailored to the context of geo-information
visualization.

Readability: The clarity and legibility of map elements, assessing
how easily participants can decode labels and symbols.
Information Extraction: The speed and accuracy with which
participants locate and interpret key data points or patterns.
Aesthetic Appeal: The overall visual attractiveness and stylistic
coherence of the map design.

Complexity: The extent of perceived visual clutter or unnecessary
detail that hinders understanding.

Participants were also asked to rank their overall preference for
all presented visualizations. In the end, participants were invited to
provide free-text feedback on the four visualizations.

4.4 Measurement

We collected both quantitative and qualitative data to assess each
visualizations. For objective performance on the Count, Identify,
Compare, and Rank tasks, we collected two primary quantitative
measures:

Accuracy: We recorded participants’ answers for each trial and
compared them against the correct answers to derive an accuracy
rate.

Completion Time: We measured the time taken by participants
from the moment a task was presented until they provided their
answer, effectively capturing the task completion duration.

For subjective evaluation, we collected the following:

Likert Scale Ratings: Participants provided ratings for four key
metrics—Readability, Information Extraction, Aesthetic Ap-
peal, and Complexity—on a 5-point Likert scale (1 = Strongly
Disagree to 5 = Strongly Agree).

Overall Preference Ranking: Participants were asked to rank
the four visualization strategies (Legend-Aside Map, Label-Fill
Map, Label-Fit Map, and Colored Label-Fill Map) based on their
overall preference for each map visualization.

Open Qualitative Feedback: Participants were encouraged to
provide open-ended comments and suggestions on each map vi-
sualization, offering valuable qualitative insights into their user
experience.

4.5 Hypotheses

Grounded in perceptual and cognitive theory [32] and the nature
of these visualization strategies, we hypothesize:

(Count Task): For counting regions by class, in-situ label place-
ments (Label-Fill, Label-Fit, Colored Label-Fill) will yield higher
accuracy and faster times than the Legend-Aside Map.

(Identify, Compare and Rank Task): When identifying a single
or multiple region’s category, the Label-Fit Map will outperform
both Label-Fill and Colored Label-Fill designs.

Identify to Compare to Rank), the performance gap of the Legend-
Aside Map versus in-situ label placements designs will widen.

H4 (Subjective Preference): Despite possible advantages of hybrid de-

signs, participants will rate the Label-Fit Map highest in subjective
preference, balancing readability, aesthetic appeal, and familiarity
better than both the legend-based and full-text-fill approaches.

5 Result

All statistical analyses were performed using IBM SPSS (version
27). The Shapiro-Wilk test was used to assess the normality of the
data, revealing non-normal distributions across all visualizations.
Consequently, the Friedman test was applied to examine the ef-
fects of the independent variable. Effect sizes (ES) were reported
using Kendall’s W to assess the overall consistency across visualiza-
tions. For within-subject comparisons, non-parametric Wilcoxon
Signed-Rank tests were utilized. To account for multiple compar-
isons and control the family-wise error rate, Bonferroni corrections
were implemented. Descriptive statistics, including means and 95%
confidence intervals (CIs), were calculated using 1,000 bootstrap re-
samples. Statistical significance was indicated as follows: *p < 0.05;
**p < 0.01; "*p < 0.001.

5.1 Results for Objective Evaluation:

The objective evaluation results are illustrated in Figure 2.
CouNT. Accuracy: A Friedman test showed significant differences
across 4 visualizations (y? = 17.547, ***p < .001, ES = .073). Colored
Label-Fill (M = 38.8% [30.8, 46.7]) performed significantly worse
than Label Fill (*p = .015) and Legend-Aside (*p = .039). The re-
maining three visualization types are Legend-Aside (M = 56.3% [48.7,
63.8]), Label-Fill (M = 56.9% [49.4, 64.3]), and Label-Fit (M = 56.3%
[48.1, 64.4]), with no significant differences observed in pairwise
comparisons. Completion Time: A Friedman test showed signif-
icant differences across visualizations (y? = 29.355, ***p < .001,
ES = .122). Participants were significantly faster with Legend-Aside
(M = 39,362.14 ms [31,630.73, 47,093.56]) than with Label-Fill (M
= 51,101.04 ms [43,190.66, 59,011.41]; ***p = .000) and Colored
Label-Fill (M = 56,943.46 ms [48,257.16, 65,629.77]; ***p = .000). The
comparison between Legend-Aside and Label-Fit (M = 41,844.05 ms
[36,691.79, 46,996.31]) did not show a significant difference.
IDENTIFY. Accuracy: A Friedman test revealed significant differ-
ences across 4 visualizations (y? = 13.306, **p = .004, ES = .055).
Significant differences were not found in pairwise comparisons.
Label-Fit yielded the highest mean accuracy (M = 79.4% [72.5, 85.6]).
Legend-Aside followed with a mean accuracy of 67.5% [59.4, 75.6].
Both Label-Fill (M = 64.4% [56.4, 72.3]) and Colored Label-Fill (M =
64.4% [56.6, 72.1]) showed lower performance. Completion Time:
A Friedman test revealed significant differences across 4 visualiza-
tions (y% = 16.110, **p = .001, ES = .067). Legend-Aside had the
shortest average completion time (M = 27,538.41 ms [23,852.43,
31,224.39]), which was significantly faster than both Label-Fill
(*p = .020) and Colored Label-Fill (**p = .002). Label-Fit (M =
29,701.38 ms [26,021.20, 33,381.56]) was slower than Legend-Aside,
but faster than Label-Fill and Colored Label-Fill, with no signifi-
cant differences from any pair of them. Colored Label-Fill showed
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Figure 2: Mean accuracy (%) and completion time (ms) for four visualization types: Legend-Aside, Label-Fill, Label-Fit, and
Colored Label-Fill, under task types: Count, Identify, Compare, and Rank. Error bars indicate 95% bootstrap confidence intervals.

the longest average completion time (M = 37,426.03 ms [31,781.19,
43,070.88)).

COMPARE. Accuracy: A Friedman test revealed significant differ-
ences across 4 visualizations (y? = 12.118, **p = .007, ES = .050).
Significant differences were not found in pairwise comparisons.
Legend-Aside showed the highest accuracy (M = 97.5% [95.1, 99.9]),
followed by Label-Fit (M = 89.4% [84.2, 94.6]), Label Fill (M = 86.9%
[80.8, 92.9]), and Colored Label-Fill (M = 88.1% [81.9, 94.3]). Com-
pletion Time: A Friedman test did not show significant differences
in Compare time. Completion time intervals ranged from 24,200 ms
to 57,800 ms across visualizations. Legend-Aside showed the shorest
interval (M = 32,696.59 ms [26,532.08, 38,859.11]), while Label-Fit
had the longest (M = 41,038.74 ms [24,228.84, 57848.65]).

RANK. Accuracy: A Friedman test did not show significant differ-
ences across 4 visualizations. Ranking accuracy intervals ranged
from 36.5% to 53.7% across the four conditions. Label-Fit had the
highest interval (M = 47.3% [40.9, 53.7]), while Colored Label-Fill
had the lowest (M = 42.7% [36.5, 48.9]). Completion Time: A
Friedman test revealed significant differences across 4 visualiza-
tions (y? = 13.095, **p = .004, ES = .055). The shortest average
completion time was observed for Label-Fill (M = 60,147.14 ms
[50,546.07, 69,748.20]), which was significantly lower than Legend-
Aside (*p = .035). Label-Fit also showed a relatively low completion
time (M = 60,999.90 ms [51,150.76, 70,849.04]), significantly lower
than Legend-Aside (*p = .011). The longest completion time was
found for Colored Label-Fill (M = 75,357.27 ms [59,011.91, 91,702.63]).

5.2 Results for Subjective Evaluation:

Figure 3 presents the results for four key subjective metrics, and
overall preference rankings are shown in Figure 4.

Readability. A Friedman test revealed significant differences across
visualizations (y? = 73.175, ***p < .001, ES = .305). Label-Fit re-
ceived the highest readability rating (M = 4.19 [4.07, 4.32]), signifi-
cantly higher than both Label-Fill (M = 3.66 [3.44, 3.87], **p = .002)
and Colored Label-Fill (M = 3.16 [2.93, 3.38], ***p = .000). Legend-
Aside (M = 4.09 [3.91, 4.27]) was also rated significantly higher than
Label-Fill (*p = .024) and Colored Label-Fill (“**p = .000), while not
significantly different from Label-Fit. Label-Fill was rated signifi-
cantly higher than Colored Label-Fill (**p = .006), which received
the lowest rating overall.
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Figure 3: Subjective scores across tasks for Readability, Aes-
thetic Appeal, Information Extraction, and Complexity, mea-
sured on a 5-point Likert scale. Higher scores indicate bet-
ter performance for all attributes except Complexity, where
lower scores reflect more desirable outcomes.

Information Extraction. A Friedman test demonstrated a signif-
icant differences (y? = 61.296, ***p < .001, ES = .255). Label-Fit
received the highest rating (M = 4.23, [4.09, 4.36]), significantly
higher than both Label-Fill (M = 3.66 [3.45, 3.88], **p = .001) and
Colored Label-Fill (M = 3.12 [2.87,3.37], ***p = .000). Legend-Aside
(M = 4.08 [3.88,4.27]) was also rated significantly higher than Col-
ored Label-Fill (***p = .000), though not significantly different from
Label-Fit and Label-Fill. Label-Fill was rated significantly higher
than Colored Label-Fill (*p = .026), which received the lowest rating.
Aesthetic Appeal. A Friedman test showed significant differences
(x? = 52.385, **p < .001, ES = .218). Legend-Aside (M = 4.00
[3.82, 4.20]) was rated most aesthetically appealing, significantly
higher than both Label-Fill (M = 3.36 [3.12, 3.60], **p = .005) and
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Colored Label-Fill (M = 2.91 [2.67, 3.15], ***p = .000). Label-Fit (M =
3.92 [3.74, 4.10]) was also rated significantly higher than Colored
Label-Fill (***p = .000) and Label-Fill (*p = .039).

Complexity. A Friedman test showed a significant difference (y? =
77.558, ***p < .001, ES = .323). Colored Label-Fill (M = 3.34 [3.12,
3.57]) and Label-Fill (M = 3.08 [2.87, 3.28]) were rated as significantly
more complex than both Legend-Aside (M = 2.33 [2.10, 2.56]), ™*p =
.000 and ***p = .000) and Label-Fit (M = 2.15 [1.92, 2.38], **p = .000
and ***p = .000). No other pairwise comparisons reached statistical
significance.

Overall Rank. A Friedman test showed significant differences
across 4 visualizations ()(2 = 762.388, “**p < .001, ES = .397).
Colored Label-Fill Map consistently received the lowest ratings and
was rated significantly lower than Legend-Aside Map (M = 1.93
[1.86, 2.01]), Label-Fill Map (M = 2.79 [2.73, 2.85]), and Label-Fit
Map (M=1.76 [1.69, 1.82]) (***all p = .000). Label-Fit Map was rated
significantly higher than Label-Fill Map (***p = .000) and Colored
Label-Fill Map (***p = .000), and showed a marginal advantage over
Legend-Aside Map (p = .087).

Open Feedback. Legend-Aside received relatively positive feed-
back for its clear design, and some users suggested placing region
names directly on the corresponding areas. Label-Fill and Colored
Label-Fit were commonly criticized for repetitive text and cluttered
layout. Users recommended reducing redundant labels, standard-
izing text orientation, and incorporating a legend. The main issue
with Label-Fit was that text in smaller regions appeared too small,
affecting readability.

6 Discussion
6.1 Hypothesis Validation

H1 was rejected: Legend-Aside achieved similarly high accuracy
compared to Label-Fit and Label Fill, and demonstrated the signif-
icant shortest completion time among the four designs in Count.
This may be because the number of color categories (8-13) was not
so challenging, so the cost of referring to the legend was not high
enough to hinder performance.

H2 was basically supported: Except for the Compare, where no
significant differences in accuracy or completion time were found,
Label-Fit showed the highest accuracy and the shortest completion
time in Identify within in-situ map visualizations since its single,
maximally-sized label maximizes legibility without visual clutter,
facilitating rapid recognition. In Rank, although accuracy differ-
ences were not significant, Label-Fit and Label-Fill had comparable
completion times, both shorter than Colored Label-Fill.

H3 was basically supported: In the Identify task, no significant
differences in accuracy were found. However, Legend-Aside showed
significantly faster completion times than both Label-Fill and Col-
ored Label-Fill. For the Compare task, neither accuracy nor com-
pletion time showed significant differences across visualizations.
In the Rank task, accuracy differences remained non-significant,
but Legend-Aside took significantly more time than Label-Fill and
Label-Fit. These results suggest that Legend-Aside performed well
in simpler tasks. In complex tasks, increased lookup demands may
have slowed performance, while some in-situ designs performed
better. Combining text and color can be effective, but the perfor-
mance did not consistently well for all in-situ designs. Among these
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Figure 4: Users’ preference on four visualizations.

tested in-situ designs, Label-Fit showed the most consistent and
balanced performance.

H4 was basically supported: Label-Fit was rated highest for readabil-
ity, information retrieval, and simplicity. Legend-Aside was only pre-
ferred for aesthetics. In the overall ranking, Label Fit also achieved
the highest position.

6.2 Key Findings and Design Recommendations

Label-Fit Map as the “All-Rounder.” By placing a single, maximally-
sized label within each region, the Label-Fit Map balances legibility
and minimal clutter. It led in both task performance and subjective
ratings, making it the optimal choice overall.

Legend-Aside for Simple Tasks. Although slower in Rank due
to legend lookups, Legend-Aside perform best in Count, Identify
and Compare, and received good subjective scores. For category
counts, identidy and comparison-focused tasks, it remains a solid
design.

Caution with Colored Label-Fill. The Colored Label-Fill Map
performed worst in speed and accuracy and was reported as visually
confusing. We should avoid pure Colored Label-Fill Map.
Label-Fill’s Mixed Effects. Repeating labels across regions (Label-
Fill) improved Count and Rank performance but generated visual
noise reported by participants. Using adaptive decluttering (e.g.,
density thresholds) to control repetition and maintain clarity might
be a good choice.

6.3 Limitations

We acknowledge several limitations. First, our evaluation was con-
ducted on static maps with 8-13 categories—near the perceptual
threshold for hue discrimination—so results may differ when in-
teractive elements (e.g., zooming, filtering) or larger category sets
are introduced. Second, we kept original color palettes for all maps;
alternative palettes or dynamic color-assignment methods could
influence the performance of color-reliant designs. Finally, all tri-
als were run on laptops/desktops under controlled lighting, and
findings may not generalize to mobile or small-screen devices.

7 Conclusion

In an 80-participant crowdsourced study on multiclass choropleth
maps with 8-13 categories—around the human perceptual limit for
reliable hue discrimination—we compared four hybrid text-color
annotation strategies: Legend-Aside, Label-Fill, Label-Fit, and
Colored Label-Fill. Our results indicate that the Label-Fit de-
sign, which places a single, maximally sized in-situ label in each
region, provides the best overall balance of accuracy, speed, and user
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satisfaction by minimizing visual clutter while maximizing legibil-
ity. The traditional Legend-Aside approach matched Label-Fit in
count, identity and compare tasks but incurred slower performance
in rapid rank due to the overhead of legend lookups. Label-Fill
strengthened category recognition in dense, multi-class scenarios
but introduced visual noise that reduced readability, and Colored
Label-Fill consistently underperformed across both objective and
subjective measures. Future work will explore adaptive and inter-
active labeling techniques, and scalability to larger category sets
and diverse device contexts.
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